
Maxwell – Boltzmann distribution for molecular velocities 

The velocity distribution is derived for an ideal gas based on very simple assumptions:  

• The distribution of velocity is isotropic in all directions (spatial homogeneity) 

• The velocity distributions in the x, y, and z directions are independent and identical 

 

• External factors enter into the distribution function for the velocity 

• We later derive the distribution function using statistical mechanics 
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James Clerk Maxwell 

(1831-1879) 

Ludwig Boltzmann 

(1844 – 1906) 

http://en.wikipedia.org/wiki/File:Boltzmann2.jpg


2 

Ideal Gas Model: 

• Atoms are small hard spheres which only interact upon collision 

• The volume of the atoms is much smaller than the volume of the gas 

Kinetic Theory of Gases: A Mechanistic Viewpoint of Gas Properties 

v : speed of the gas molecules 

vx, vy, vz: components of velocity  

               of the gas molecules 

• We assume there is no bias in the 

distribution of the velocity 

components vx, vy, vz 

• The choice of coordinate system is 

arbitrary 
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The average of the square of the velocity components is identical in all directions 

Why not state the average of  the velocity 

components? 
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Preamble: Relating velocity distribution to macroscopic pressure of an ideal gas 

• The collision of molecule i with the 

wall results in a momentum change and 

a force exerted on the wall.  

• Contribution to pressure from molecule i 

with velocity vx,i 

Total gas pressure from all 

molecules in x-direction 
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Result: Temperature is related to the 

average kinetic energy of molecules 

in an ideal gas! 

Mechanical expression for pressure of an ideal gas - 2 
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• From microscopic mechanical analysis 

• From experimental macroscopic study of ideal gases 
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• A macroscopic thermodynamic variable T is related to the average microscopic 

kinetic energy of the molecules; 

• The average squared speed of molecules in the system is proportional to the 

temperature; 

• Can we find the probability distribution of speed and kinetic energy? 

microexpt PP 



Assumptions used to derive the Maxwell – Boltzmann distribution for velocities 
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2) The probability distribution of the molecule only depends on the speed and not 

individual Cartesian components of the velocity, which are arbitrary (why?) 

A Gaussian distribution! 5 
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1) The probability distributions in x, y, z directions have identical mathematical form 

and are independent of each other. 
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Taking the derivative of both sides with respect to vx (using the chain rule), 

Combining 1) and 2) 



Maxwell – Boltzmann distribution for molecular velocities 
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• The A factor is determined by the normalization condition of the probability: 

• The C factor is determined from the kinetic theory of gases result: 
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The probability distribution has two unknown factors, A and C: 

The probability distribution for 

Cartesian components 

Note that the range of the velocity components is from -∞ to + ∞ 



• Distribution is symmetric w.r.t. 

positive and negative directions; 

 

• Average velocity component is 

0; 

 

 

• Most probable value for the 

component of velocity is 0, 

 

• The standard deviation is: 

Maxwell – Boltzmann distribution for molecular velocity components 
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• Distribution is broad! 

 

• Distribution becomes broader 

at higher temperature 
https://phet.colorado.edu/en/simulation/gas-properties 
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Maxwell – Boltzmann distribution for molecular speed 

The speed distribution is not Gaussian! 
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Combining the three components of the velocity distribution 

Change the velocities from Cartesian coordinates to spherical polar coordinates: 
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 Giving a distribution function for speed: 

The probability distribution does not depend on angles θ and  
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The Maxwell – Boltzmann distribution for speed of one molecule 
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The probability distribution for speed: 

Most probable speed: 

Average speed: 

• The probability distribution is broad! 

• Distribution becomes broader at 

higher temperature 
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The Maxwell – Boltzmann distribution for speed of one molecule 
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Molecular dynamics simulation of ideal 

gas and determining the velocity 

distribution one molecule 



We can determine an energy distribution for a single ideal gas molecule by changing 

the variable from v to ε 
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Maxwell – Boltzmann distribution for single molecule energy 
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• Most probable energy 

• Average energy 

• Distribution function for the 

energy of one molecule: 
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• Variance (spread) of the energy distribution? 
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Maxwell – Boltzmann distribution for a single molecule energy 
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• The distribution of energy for a 

single ideal gas molecule is broad 
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Convolution: Maxwell – Boltzmann distribution for the energy of 2 molecules 

Convolution of two one-molecule energy probability distributions 
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The integral can be evaluated (see Chapter 5) to give 
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In an ideal gas, the total energy is the sum of one-molecule energies and the 

probabilities for energies in different molecules are uncorrelated 
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Maxwell – Boltzmann distribution for energy of two molecules 

Most probable two-

molecule energy: 

Average: 
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Variance:  
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Maxwell – Boltzmann distribution for energy of N-molecules 
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• Change of variables to energy relative to the maximum E/EP = E*  

NE 3
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Most probable: 

Average: 

Variance: 
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We can continue the convolution process to get probability for energies of N molecules: 
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Maxwell – Boltzmann distribution for energy of N-molecules 

• Probabilities get “sharper” as the 

number of molecules increases 

• The shape of the distribution becomes 

Gaussian (central limit theorem)! 
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Probability distributions for 1 to 10 molecule energies 

“Reduced energy” 



 Energy distributions for large collections of molecules 
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Stirling’s approximation can be used to 

evaluate factorials of large numbers: 
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• Probabilities get sharp and narrow for large N 

• The most probable energy Emax overwhelms 

the distribution 

Probability distributions for 10 to 1000 molecule energies 
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Central limit theorem applies for the energy distribution of for large 

collections of molecules 
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Simplify the notation using n = 3N/2 – 1 and  β = 1/kT to define: 

x = (EN – n/β)/(n/β)  
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Using the logarithm approximation for small x: 

= 1 from the relation 

for the factorial of 

large numbers 

The energy distribution for the N molecule system becomes Gaussian! 


